Delivery alert

There may be an issue with the delivery of your newspaper. This alert will expire at NaN. Click here for more info.

Recover password

LANL’s work on portable MRI earns breakthrough award

SANTA FE, N.M. — Los Alamos National Laboratory’s portable MRI, featured in a Journal article in May, was named one of the Top 10 Breakthroughs of the Year by Physics World, the member magazine of the Institute of Physics.

Portable MRI, also called Battlefield MRI (bMRI), uses ultra-low-field magnetic resonance imaging to create images of injured soft tissues, such as the brain.

Michelle Espy

Michelle Espy

Currently, soldiers wounded in battle must be flown to a large hospital to undergo an MRI. The new technology also is expected to have applications in remote or poor parts of the world where there is no access to MRI at all.

“We’ve been in contact with doctors who routinely work in the Third World and report that MRI would be extremely valuable in treating pediatric encephalopathy, and other serious diseases in children,” said Michelle Espy, the bMRI project leader.

“Hospital-based MRI devices are big and expensive,” said Espy. “And they require considerable infrastructure, like large quantities of liquid nitrogen and helium, and a lot of energy. bMRI doesn’t have those same requirements, making it a much lighter, less expensive and low-power alternative that can be deployed to hard-to-reach places like the battlefield and remote hospitals in poor countries.”

Espy and her team wanted to see if images of sufficient quality could be made with ultra-low-magnetic fields, similar in strength to the Earth’s magnetic field. To achieve images at such low fields they use exquisitely sensitive detectors called Superconducting Quantum Interference Devices, or SQUIDs.

SQUIDs are among the most sensitive magnetic field detectors available, so interference with the signal is the primary stumbling block. “SQUIDs are so sensitive they’ll respond to a truck driving by outside or a radio signal 50 miles away,” said Al Urbaitis, a bMRI engineer. The team’s first generation bMRI had to be built in a large metal housing in order to shield it from interference.

By the end of the internally funded project, the Los Alamos team was also working in the open environment without the large metal housing, using a lightweight series of wire coils that surround the bMRI system to compensate the Earth’s magnetic field. In the future, the field compensation system is expected function similar to noise-cancelling headphones to eradicate invading magnetic field signals on-the-fly.

“We’re very honored that Physics World has recognized bMRI as a Breakthrough of the Year,” said Per Magnelind, a scientist at Los Alamos who works on bMRI. “We’re hopeful that, with additional development through external follow-on funding, bMRI systems could become relatively easy and inexpensive to deploy.”